Structure Reports

Online
ISSN 1600-5368

(E) $-\mathrm{N}^{\prime}$-(2,3-Dihydroxybenzylidene)-4methoxybenzohydrazide

Premrudee Promdet, ${ }^{\text {a }}$ Jirapa Horkaew, ${ }^{\text {a }}$ Suchada Chantrapromma ${ }^{\mathbf{a} *} \ddagger$ and Hoong-Kun Fun ${ }^{\mathbf{b}} \S$

${ }^{\text {a }}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\text {b } X \text {-ray }}$ Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM,
Penang, Malaysia
Correspondence e-mail: suchada.c@psu.ac.th

Received 28 October 2011; accepted 31 October 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.046 ; w R$ factor $=0.136 ;$ data-to-parameter ratio $=18.6$.

The molecule of the title benzohydrazide derivative, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$, is twisted and exists in a trans conformation with respect to the $\mathrm{C}=\mathrm{N}$ double bond. The dihedral angle between the benzene rings is $56.86(9)^{\circ}$ and the C atom of the methoxy group deviates slightly $\left[\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}=-10.4(3)^{\circ}\right]$ from its attached benzene ring. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond generates an $S(6)$ ring. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and bifurcated $\mathrm{N}-$ $\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds, as well as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, into two-dimensional networks lying parallel to the $b c$ plane. A weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction also occurs.

Related literature

For background to benzohydrides and related structures, see: Fun et al. (2011); Horkaew et al. (2011). For related structures, see: Han \& Zhao (2010); Li \& Ban (2009). For reference bondlength data, see: Allen et al. (1987). For graph-set theory, see: Bernstein et al. (1995).

Experimental

Crystal data

[^0]| $\mu=0.10 \mathrm{~mm}^{-1}$ | $0.34 \times 0.22 \times 0.08 \mathrm{~mm}$ |
| :--- | :--- |
| $T=297 \mathrm{~K}$ | |
| | |
| Data collection | |
| Bruker SMART APEXII CCD | 13930 measured reflections |
| \quad diffractometer | 3768 independent reflections |
| Absorption correction: multi-scan | 2203 reflections with $I>2 \sigma(I)$ |
| $\quad(S A D A B S ;$ Bruker, 2009) | $R_{\mathrm{int}}=0.037$ |

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.136$
$S=1.02$ independent and constrained refinement
3768 reflections
203 parameters
$\Delta \rho_{\max }=0.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 9-\mathrm{C} 14$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \mathrm{O} 3 \cdots \mathrm{~N} 2$	0.88 (3)	1.86 (3)	2.6279 (18)	146 (2)
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 1^{\text {i }}$	0.92 (2)	1.75 (2)	2.6577 (19)	170 (2)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 3^{\text {ii }}$	0.864 (19)	2.221 (19)	3.083 (2)	175.8 (17)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 4^{\text {ii }}$	0.864 (19)	2.481 (19)	2.961 (2)	115.8 (15)
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {iii }}$	0.93	2.50	3.413 (2)	166
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	3.00	3.539 (2)	119

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{5}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+1,-y,-z+1$; (iv) $-x+2,-y,-z+2$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

PP thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. PP and JH thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6485).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Fun, H.-K., Horkaew, J. \& Chantrapromma, S. (2011). Acta Cryst. E67, o264402645.

Han, Y.-Y. \& Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.
Horkaew, J., Chantrapromma, S. \& Fun, H.-K. (2011). Acta Cryst. E67, 02985.
Li, C.-M. \& Ban, H.-Y. (2009). Acta Cryst. E65, o876.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o3224 [doi:10.1107/S1600536811045740]

(E)-N'-(2,3-Dihydroxybenzylidene)-4-methoxybenzohydrazide

P. Promdet, J. Horkaew, S. Chantrapromma and H.-K. Fun

Comment

Our on-going research on the biological activities of benzohydrazides containing the - $\mathrm{CO}-\mathrm{NH}-\mathrm{N}=\mathrm{CH}-$ grouping has led us to synthesize the title compound (I) in order to compare its activity with other related compounds (Fun et al., 2011; Horkaew et al., 2011). Our results found that (I) exhibits interesting antibacterial and antioxidant activities which will be reported elsewhere with other related benzohydrazide derivatives. Herein the crystal structure of (I) is reported.

The molecule of the title benzohydrazide derivative (Fig. 1), $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$, is twisted and exists in a trans-configuration with respect to the $\mathrm{C} 8=\mathrm{N} 2$ bond $[1.280(2) \AA]$ and the torsion angle $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9=178.17(15)^{\circ}$. The dihedral angle between the two benzene rings is $56.86(9)^{\circ}$. The middle fragment is slightly twisted as indicated by the torsion angles $\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2=-0.8(3)^{\circ}$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8=169.90(16)^{\circ}$. The mean plane through this middle bridge $(\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 2 /$ C8) makes the dihedral angles of 41.08 (11) and $16.45(10)^{\circ}$ with the planes of 4-methoxyphenyl and 2,3-dihydroxyphenyl rings, respectively. The two hydroxy groups of the 2,3-dihydroxyphenyl are co-planar with their attached benzene ring with the r.m.s. $=0.0214$ (2) \AA for the eight non H atoms. The methoxy group is slightly twisted from its attached benzene ring with the torsion angle $\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3=-10.4(3)^{\circ}$. Bond distances of (I) are in normal range (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Han \& Zhao, 2010; Li \& Ban, 2009).

In the crystal packing (Fig. 2), the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as well as with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1), into two dimensional networks parallel to the $b c$ plane. A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction was also presented (Table 1).

Experimental

4-Methoxybenzohydrazide ($2 \mathrm{mmol}, 0.33 \mathrm{~g}$) was dissolved in ethanol $(10 \mathrm{ml})$ and a solution of 2,3-dihydroxybenzaldehyde $(2 \mathrm{mmol}, 0.28 \mathrm{~g})$ in ethanol $(10 \mathrm{ml})$ was then slowly added to it. The mixture was refluxed for around 5 hr . The solution was then cooled to room temperature and left to evaporate in air. The yellow solid product that appeared was collected by filtration and washed with ethanol and dried in air. Yellow blocks of the title compound were obtained after recrystalization from methanol by the slow evaporation of the solvent at room temperature after several days, Mp. 502-503 K.

Refinement

Amide and hydroxy H atoms were located from the difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA$ for aromatic and CH and $0.96 \AA$ for CH_{3} atoms. The $U_{\text {iso }}$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at $0.72 \AA$ from C9 and the deepest hole is located at $1.02 \AA$ from C3.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. Hydrogen bond is drawn as a dashed line.

Fig. 2. The crystal packing of the title compound viewed along the a-axis. Hydrogen bonds were drawn as dashed lines.

(E)- N^{1}-(2,3-Dihydroxybenzylidene)-4-methoxybenzohydrazide

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=286.28$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=11.6242$ (15) \AA
$b=9.7516$ (13) \AA
$c=12.6465(16) \AA$
$\beta=96.409(2)^{\circ}$
$V=1424.6(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII CCD

diffractometer

Radiation source: fine-focus sealed tube graphite
Detector resolution: 8.33 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.967, T_{\text {max }}=0.992$
13930 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$F(000)=600$
$D_{\mathrm{x}}=1.335 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=502-503 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3768 reflections
$\theta=2.6-29.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, yellow
$0.34 \times 0.22 \times 0.08 \mathrm{~mm}$

3768 independent reflections
2203 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=29.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-14 \rightarrow 15$
$k=-13 \rightarrow 12$
$l=-17 \rightarrow 17$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.136$
$S=1.02$

3768 reflections
203 parameters
0 restraints

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0547 P)^{2}+0.2931 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.20$ e \AA^{-3}
$\Delta \rho_{\min }=-0.18$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.76198(12)$	$0.03025(16)$	$1.01358(9)$	$0.0644(4)$
O2	$0.52798(13)$	$-0.17500(15)$	$0.56417(11)$	$0.0716(4)$
O3	$0.95302(12)$	$0.31125(15)$	$1.18591(10)$	$0.0573(4)$
H1O3	$0.919(2)$	$0.266(3)$	$1.131(2)$	$0.105(9)^{*}$
O4	$1.07704(14)$	$0.45742(15)$	$1.33066(10)$	$0.0655(4)$
H1O4	$1.134(2)$	$0.491(2)$	$1.380(2)$	$0.092(8)^{*}$
N1	$0.86300(14)$	$0.15397(15)$	$0.90461(11)$	$0.0472(4)$
H1N1	$0.8895(16)$	$0.1593(18)$	$0.8436(15)$	$0.050(5)^{*}$
N2	$0.92453(13)$	$0.21946(15)$	$0.98936(10)$	$0.0457(4)$
C1	$0.71751(15)$	$-0.00089(18)$	$0.82727(13)$	$0.0432(4)$
C2	$0.68810(17)$	$-0.13814(19)$	$0.82957(15)$	$0.0574(5)$
H2A	0.7107	-0.1896	0.8903	0.069^{*}
C3	$0.62568(18)$	$-0.2001(2)$	$0.74317(17)$	$0.0621(5)$
H3A	0.6080	-0.2930	0.7453	0.075^{*}
C4	$0.58959(16)$	$-0.12397(19)$	$0.65375(14)$	$0.0516(5)$
C5	$0.61520(18)$	$0.0146(2)$	$0.65158(14)$	$0.0548(5)$
H5A	0.5883	0.0672	0.5926	0.066^{*}
C6	$0.68036(17)$	$0.07452(19)$	$0.73656(13)$	$0.0514(5)$
H6A	0.6999	0.1668	0.7334	0.062^{*}
C7	$0.78258(15)$	$0.06096(18)$	$0.92317(12)$	$0.0445(4)$
C8	$1.01140(16)$	$0.29144(17)$	$0.96886(13)$	$0.0451(4)$
H8A	1.0311	0.2950	0.8996	0.054^{*}
C9	$1.07959(15)$	$0.36759(16)$	$1.05231(12)$	$0.0417(4)$
C10	$1.04835(15)$	$0.37551(17)$	$1.15543(13)$	$0.0426(4)$
C11	$1.11564(16)$	$0.45196(17)$	$1.23312(13)$	$0.0464(4)$

C12	$1.21434(17)$	$0.51668(18)$	$1.20748(15)$	$0.0525(5)$
H12A	1.2599	0.5662	1.2593	0.063^{*}
C13	$1.24602(18)$	$0.50867(19)$	$1.10575(16)$	$0.0569(5)$
H13A	1.3128	0.5527	1.0894	0.068^{*}
C14	$1.17932(17)$	$0.43587(18)$	$1.02824(14)$	$0.0512(5)$
H14A	1.2006	0.4321	0.9596	0.061^{*}
C15	$0.5152(2)$	$-0.3199(2)$	$0.5548(2)$	$0.0828(7)$
H15A	0.4773	-0.3422	0.4856	0.124^{*}
H15B	0.4697	-0.3528	0.6083	0.124^{*}
H15C	0.5902	-0.3624	0.5642	0.124^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0620(9)$	$0.0923(11)$	$0.0369(6)$	$-0.0148(8)$	$-0.0038(6)$	$0.0134(6)$
O2	$0.0770(11)$	$0.0673(9)$	$0.0646(9)$	$-0.0017(8)$	$-0.0194(7)$	$-0.0185(7)$
O3	$0.0611(9)$	$0.0729(9)$	$0.0388(6)$	$-0.0241(7)$	$0.0097(6)$	$-0.0122(6)$
O4	$0.0805(11)$	$0.0773(10)$	$0.0381(7)$	$-0.0266(8)$	$0.0033(7)$	$-0.0101(6)$
N1	$0.0545(10)$	$0.0569(9)$	$0.0299(7)$	$-0.0064(7)$	$0.0029(6)$	$-0.0053(6)$
N2	$0.0505(9)$	$0.0523(8)$	$0.0330(7)$	$-0.0019(7)$	$-0.0011(6)$	$-0.0064(6)$
C1	$0.0434(10)$	$0.0478(9)$	$0.0371(8)$	$0.0021(8)$	$-0.0017(7)$	$0.0014(7)$
C2	$0.0612(13)$	$0.0513(11)$	$0.0557(11)$	$0.0040(9)$	$-0.0112(9)$	$0.0120(8)$
C3	$0.0671(14)$	$0.0444(10)$	$0.0707(12)$	$-0.0024(9)$	$-0.0107(10)$	$0.0010(9)$
C4	$0.0473(11)$	$0.0560(11)$	$0.0494(10)$	$0.0029(9)$	$-0.0036(8)$	$-0.0099(8)$
C5	$0.0683(13)$	$0.0549(11)$	$0.0381(9)$	$0.0039(9)$	$-0.0073(8)$	$0.0027(8)$
C6	$0.0685(13)$	$0.0455(10)$	$0.0381(8)$	$-0.0016(9)$	$-0.0036(8)$	$0.0023(7)$
C7	$0.0441(10)$	$0.0522(10)$	$0.0356(8)$	$0.0049(8)$	$-0.0025(7)$	$0.0041(7)$
C8	$0.0537(11)$	$0.0469(9)$	$0.0348(8)$	$0.0037(8)$	$0.0054(7)$	$-0.0022(7)$
C9	$0.0448(10)$	$0.0406(9)$	$0.0391(8)$	$0.0025(7)$	$0.0021(7)$	$0.0012(7)$
C10	$0.0448(10)$	$0.0431(9)$	$0.0392(8)$	$-0.0026(7)$	$0.0013(7)$	$0.0008(7)$
C11	$0.0555(12)$	$0.0435(9)$	$0.0383(8)$	$-0.0038(8)$	$-0.0029(8)$	$0.0006(7)$
C12	$0.0561(12)$	$0.0438(10)$	$0.0545(10)$	$-0.0082(9)$	$-0.0080(9)$	$0.0023(8)$
C13	$0.0530(12)$	$0.0523(11)$	$0.0654(12)$	$-0.0090(9)$	$0.0066(9)$	$0.0067(9)$
C14	$0.0554(12)$	$0.0507(10)$	$0.0487(10)$	$-0.0017(9)$	$0.0110(9)$	$0.0045(8)$
C15	$0.0923(19)$	$0.0771(16)$	$0.0788(15)$	$-0.0244(14)$	$0.0085(13)$	$-0.0273(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.231(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(3)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.365(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.374(2)$
$\mathrm{O} 2-\mathrm{C} 15$	$1.424(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{O} 3-\mathrm{C} 10$	$1.365(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9300
$\mathrm{O} 3-\mathrm{H} 1 \mathrm{O} 3$	$0.88(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.451(2)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.360(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9300
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4$	$0.91(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.394(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.342(2)$	$\mathrm{C} 9-\mathrm{C} 14$	$1.400(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.3773(18)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.401(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$0.863(19)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.379(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.280(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.379(3)$

sup-4

supplementary materials

C1-C2	1.382 (3)
C1-C6	1.390 (2)
C1-C7	1.484 (2)
C2-C3	1.382 (3)
C2-H2A	0.9300
C3-C4	1.379 (3)
C3-H3A	0.9300
C4-O2-C15	118.09 (17)
C10-O3- H 1 O 3	108.7 (17)
C11-O4- H 1 O 4	110.3 (16)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	119.26 (14)
C7-N1-H1N1	121.5 (12)
N2-N1-H1N1	117.5 (12)
C8-N2-N1	116.72 (14)
C2-C1-C6	118.34 (16)
C2- $\mathrm{C} 1-\mathrm{C} 7$	118.75 (15)
C6-C1-C7	122.85 (16)
C3-C2-C1	121.08 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.86 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
C2-C3-H3A	120.1
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	124.61 (18)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	115.69 (17)
C3-C4-C5	119.71 (17)
C6-C5-C4	120.02 (17)
C6-C5-H5A	120.0
C4-C5-H5A	120.0
C5-C6-C1	120.93 (17)
C5-C6-H6A	119.5
C1-C6-H6A	119.5
O1-C7-N1	122.57 (16)
O1-C7-C1	121.74 (17)
N1-C7-C1	115.67 (14)
C7-N1-N2-C8	169.90 (16)
C6-C1-C2-C3	1.5 (3)
C7- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.77 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.4 (3)
C15-O2-C4-C3	-10.4 (3)
C15-O2-C4-C5	170.0 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	179.78 (19)
C2-C3-C4-C5	-0.6 (3)
O2-C4-C5-C6	-177.74 (19)
C3-C4-C5-C6	2.6 (3)
C4-C5-C6-C1	-2.6 (3)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	0.5 (3)
C7-C1-C6-C5	-176.62 (18)

C12-H12A	0.9300
C13-C14	1.377 (3)
C13-H13A	0.9300
C14-H14A	0.9300
C15-H15A	0.9600
C15-H15B	0.9600
C15-H15C	0.9600
N2-C8-C9	120.83 (15)
N2-C8-H8A	119.6
C9-C8-H8A	119.6
C10-C9-C14	119.05 (16)
C10-C9-C8	122.03 (16)
C14-C9-C8	118.92 (15)
O3-C10-C9	122.88 (15)
O3-C10-C11	116.98 (15)
C9-C10-C11	120.15 (16)
O4-C11-C12	124.23 (16)
$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 10$	116.24 (16)
C12-C11-C10	119.52 (16)
C11-C12-C13	120.59 (17)
C11-C12-H12A	119.7
C13-C12-H12A	119.7
C14-C13-C12	120.36 (18)
C14-C13-H13A	119.8
C12-C13-H13A	119.8
C13-C14-C9	120.31 (17)
C13-C14-H14A	119.8
C9-C14-H14A	119.8
$\mathrm{O} 2-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	109.5
O2-C15-H15B	109.5
H15A-C15-H15B	109.5
$\mathrm{O} 2-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-40.2 (2)
N1-N2-C8-C9	178.17 (15)
N2-C8-C9-C10	-5.6 (3)
N2-C8-C9-C14	174.85 (16)
C14-C9-C10-O3	-179.49 (16)
C8-C9-C10-O3	1.0 (3)
C14-C9-C10-C11	0.6 (3)
C8-C9-C10-C11	-178.97 (16)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 4$	-1.8 (2)
C9-C10-C11-O4	178.15 (16)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	178.61 (16)
C9-C10-C11-C12	-1.5 (3)
$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	-178.43 (18)

supplementary materials

$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-0.8(3)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$1.1(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$177.88(14)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.0(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-38.7(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 9$	$-0.9(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$138.5(2)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 13$	$0.6(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$142.68(18)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 13$	$-179.82(17)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ is the centroid of the $\mathrm{C} 9-\mathrm{C} 14$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \mathrm{O} 3 \cdots \mathrm{~N} 2$	$0.88(3)$	$1.86(3)$	$2.6279(18)$	$146(2)$
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.92(2)$	$1.75(2)$	$2.6577(19)$	$170(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.864(19)$	$2.221(19)$	$3.083(2)$	$175.8(17)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.864(19)$	$2.481(19)$	$2.961(2)$	$115.8(15)$
$\mathrm{C} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.93	2.50	$3.413(2)$	166
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.93	3.00	$3.539(2)$	119

Symmetry codes: (i) $-x+2, y+1 / 2,-z+5 / 2$; (ii) $x,-y+1 / 2, z-1 / 2$; (iii) $-x+1,-y,-z+1$; (iv) $-x+2,-y,-z+2$.

Fig. 1

Fig. 2

[^0]: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
 $c=12.6465(16) \AA$
 $M_{r}=286.28$
 Monoclinic, $P 2_{1} / c$
 $a=11.6242(15) \AA$
 $\beta=96.409$ (2) ${ }^{\circ}$
 $V=1424.6(3) \AA^{3}$
 $b=9.7516(13) \AA$
 $Z=4$
 Mo $K \alpha$ radiation
 \ddagger Thomson Reuters ResearcherID: A-5085-2009.
 § Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

